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I. Introduction

1. General

The term, 'neural network' is generic, encompassing a wide range
of physiological and cognitive models, yet cognitive science and

neurophysiology are two fundamentally different disciplines
involved in what has been termed 'neural' modelling. Both
perspectives share some structural characteristics (e.g.

thresholding) the differences between the two often center on
whether the models should be based on observed physiological
properties, or on representations of cognitive processes. Herein
we use the term 'neural network' to include any paradigm of a
network process that is involved in the recognition or

classification of data.

Physiological models involve simulation of known
neurophysiological processes [7 et al.], most often 'associative
neurons', although from time to time 'motor' and 'sensory' neurons
are the focus. Some researchers claim that these simulations can
perform tasks such as adaptive pattern recognition and learning.
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Although across-the-board performance characteristics have not been
determined, there have been some successful demonstrations of these

paradigms. These models are typified by polynomial

representation.

Cognitive theory presupposes that one can best understand the

functions of the mind by seeking to model representations of what
are termed 'cognitive processes'[5,6]. The expositions of
cognitive models take on a variety of forms, including forms
applicable to neural net theory. The field includes such diverse
phenomena as intelligence, perception, knowledge, problem-solving,
learning and memory, pattern recognition and classification.
Consequently, cognitive models lend themselves toward stochastic

(random variable) as well as textual presentations. Moreover, the
types of patterns and classes that cognitive models use may involve
concepts foreign to mainstream research in the field of pattern

recognition and classification.

Clearly, both fields are in their infancy, there is some overlap,
and hybrids between the two will continue to develop. It is
important to gain some kind of grasp of the drawbacks and benefits
each perspective presents. Over the past several years there have

been a confluence of various disciplines in the field of neural
nets. Cognitive science, neural modelling, computer and
information science all have contributed to the solution of a
particular group of problems. A number of important problems are
approached in a manner fundamentally different than that of a
typical sequential, (i.e. von Neumann) computer program; these
neural architectures and algorithms tend towards parallelism and
explicit feedback. Moreover, the neural networks are heuristic;

they involve rules-of-thumb, knowledge-seeking behavior, and
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problems are often attacked from several points simultaneously.

It is believed that 'new' network architectures will aid in the

solution of several long standing problems of interest to the AI /
cognitive community: handwriting recognition, object recognition,

feature identification, and continous time speech, Moreover, these

paradigms show promising results in the cognitive field

(particularly, in areas such as text understanding, and concept

formation).

2. Key Issues in Neural Nets

There are several dilemmas. Of primary concern is that for

reasons of cost, it is desirable to have a single network for a
variety of applications. Hardware resources must be apportioned
according to the nature of the problem. Although it is easily

observed that one network will never be optimal for all problems,
it is not beyond the realm of possibility that a single network may
be able to function effectively over a wide range of problems. It
is believed that some degree of speciation is necessary in order to
develop those network architectures that will prove most useful.
That is, an optimal network will be of a hybrid nature, rather than
of a completely homogenous and symmetrical internal design. So on
the one hand, there exist a number of different networks in the
literature, and it is desirable to survey this material. On the
other, there are cost imperatives that indicate consideration of

a single model, however internally heterogenous.

This paper contains some basic material as well as some more
advanced concepts. Herein we survey various schema and their

3



some corresponding applications with an emphasis on conceptual
aspects of imaging. Along the way we will explore and
critique various aspects of these paradigms and as well as
developing promising avenues for future research. We undertake
this research with the intent to contribute to the development of a
robust network capable of handling a wide range of problems.

We survey features general to a class of nets; we do not
concentrate on one specific application or paradigm, but rather
sample from the field those elements which appear promising to more
than one models. We are interested in extracting basic underlying
concepts, perhaps investigating novel approaches, and then
generalizing these concepts to cover a wider range of applications.
Each models have their own particular benefits and drawbacks. Our
long-term research goals emphasize paradigms, architectures, and

general theory that are deemed most promising to various
problems of widespread interest, namely, database and knowledge
organization, image recognition problems, and continous-time
speech. We will not discuss certain problems that are applicable
to certain specialized types of network processors, for instance,
factory type simulations or communication network models. Nor will
we cover certain special applications, such as 3-d imaging, scene

segmentation, temporal imaging models, nor phonological analysis of

speech.

The cost of problem representation depends on the foundations of
the network paradigm and particular characteristics of the domain.

This being the case, we feel that rather than attempt to model
neural networks on physiological models, there should be detailed

investigation of cognitive processes. As has been noted by more
than one researcher, 'thought' is something more than just the

electro-chemical wirings of the brain. It involves something
related to the function of language, that is something that gives
those wirings and their signals 'meaning'.
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II. Perspectives

1. Some comments

Research in the field of neural networks has resulted in a

diversity of models, theories, and notation, an aspect of the

research which presents an obstacle as well as an opportunity.
Problem domains differ, results and benchmarks that are appropriate

across a wide range of systems have not been developed, and
combinations or hybrids of networks haven't been explored in depth.

There are a number of different topics that are relevant to the
study of 'neural net' theory. Each of these topics are useful
tools for analyses of varied neural net paradigms and provide a

methodological or structural rooting in terms of research. There
are a few central perspectives by which we can grasp fundamental or
general properties of neural nets. Any network architecture may be

more conducive to one type of analysis over another, but here we
present three perspectives that are general threads that run

throughout the research, namely: 1) learning automata, 2)
'self-organizing' properties, and 3) pattern recognition and

classification. Each of these perspectives have elements in common
with the others, however, they serve as reference points by which

to view diverse network paradigms.

Learning automata theories envisage a system of learning (or
conditioning responses to stimuli), and performance (responses

to presented stimuli). In the learning stage, certain knowledge
is presented and the system attempts to organize the knowledge into a
form in which it can be accurately and readily recalled. The
second, performance phase, involves the presentation of a stimulus,
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ideally, similar to that presented in the learning phase, and by
using this stimulus as a kind of key to the organized knowledge,

the system generates a response. The learning phase often draws
characteristics about the whole data set, (that is the set of

presented stimulus-response pairs), whereas, the performance phase
involves a one-by-one evaluation of the stimuli. [2,14]. A given
system's ability to correctly respond to all presented stimuli
depends on the statistical characteristics of the domain. In some

instances, there may be noise in the system, manifest as either
decision errors, in the discrete case, or inappropriate estimators
in the continous case. This state of affairs implies we should
view information theoretic concepts such as channel capacity for

use in performance measurements.

Self-organization basically seeks to relate a number of objects or
nodes in a given network. These relations may be based on
adjacency of objects of a certain type (as in imaging applications)
or it may seek to characterize a given node by the nature of nodes
with which it connects. Self-organizing networks may be

represented by varied processes, including instantiation of arcs
between nodes, weighting of arcs between nodes and formation of
subnetworks. Certain vision based recognition problems are
modelled by applying self-organizing principles to adjacency
relations. For instance, if two adjacent pixels are of the same
color (and not the background color) then we assume the pixels
correspond to the same object. This is termed 'blob recognition',
or 'object recognition', (although the former is more appropriate
for this level of processing). General features such as size of a
'blob' or 'object' may be determined, or contours identified and
features extracted from the edge outline [3].

6



Classification and recognition problems are appropriate for a

number of problems; as a body of knowledge there is some overlap

with semantic theory. Typical problems involve assigning unique

values to those patterns that occur the most frequently, or

examining a set of objects one-by-one and then assigning these

objects to their appropriate class. Classification may be

accomplished by strict rules, or inferred by some process similar

to learning. However, not all classification problems fit this

form. More intricate assumptions must be made if there is more

than one way for a system to validly classify an object.

Similarly, classifications based on samples, or classification of

objects not previously seen require more sophisticated approaches

[8,9 et al].

7
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III. Object recognition

1. General

Much of the research into neural models has focused on imaging

applications. There are a number of interesting paradigms in this

area; here we cover a set of problems encompassed by the rubric

'object recognition'. Object recognition models generally involve

identification, or matching of an object with a representation of

that type of object in storage. There are two basic approaches:

template matching and feature recognition. Template matching

involves comparison of an object with a target on a pixel by pixel

basis. Feature recognition, involves the use of detection of

features and using their presence or absence to distinguish various

types of objects. In practice the two perspectives overlap, but

the fundamental differences are clear.

2. Template matching

In its simplest form template matching merely compares a given

observation with the various templates stored in memory.

Comparisons are done on a pixel by pixel basis. The

template which most closely matches the observation is chosen as

the match for that observation. A perfect match would consist of
no errors. If the closest match is not a near match, or if two or

more templates are virtual matches with a given instance of input,

there may be a problem with noise, that is invalid input ---- an

object that was not intended to be recognized or that was not

correctly stored in memory.
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[Fig. 1 Templates of the letter 'B' and the numeral '8']

Typically a Hamming distance model is used, where each pixel is
given an equal weight (refer to APPENDIX).

3. Orientation marks

Problems may arise with the template model if there are small
rotations of an example from the position as it is registered in
the template. In applications such as automated part inspection
there may be a significant degree of angular offset, which we refer

to as 'orientation'. Now, in some cases, parts have distinguishing
features, such as a cut corner or a flange, that serve in and of

themselves to determine orientation; in other cases, marks must be
correctly placed on the parts in order to ascertain the true
orientation. By locating the mark and finding its rotational
orientation, the image can be adjusted to the correct position

accordingly. This is most useful where the system can't store the
various rotations of a large number of different parts, but can

recognize various rotations of a single mark applied to different

parts.

9
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[Fig. 2 Orientation mark]

4. Feature recognition

There is the need for a system which does require an explicit
orientation mark, yet can orient and identify the various patterns
without regard to rotation. For instance, a system that can view

and recognize parts on an assembly line, or matching fingerprint
with a fingerprint file. Feature recognition can be viewed as a

more generic form of recognition than template matching. Rather
than matching on a one-to-one basis as occurs in template matching

algorithms, feature matching involves identification of formal
attributes, such as curves, loops, and straight lines, or, more
abstract relations such as correspondences between various
attributes previously identified.

This descriptive procedure is more appropriate for many problems,
since it allows for a wider range of phenomena to be recognized,
and allows for instances that have not been previously seen to be

categorized correctly. Ideally, features are drawn from an

example, and then these features are matched with a stored
description of a class. This stored description may be learned

from a sample data set, or in what may amount to the same thing,
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derived from statistical measurements of the sample. Feature

recognition proves useful in recognizing objects that are

members of a given type, but where there are case-to-case

variations. As an example, recognizing a given printed letter of

the alphabet in several different fonts. The key questions revolve

around what features are recognized, and how this recognition is

accomplished.

Features must be recognized in all images in which they exist.

Spatial orientation of the sample should have no effect on

identification, nor should the juxtaposition of other objects.

Moreover, the system should be able to accurately identify these

features or their absence in the presence of some noise, and

should be able to identify those cases where excessive noise makes

accurate identification impossible.

As a brief example we will outline one simple image identification

system involving feature recognition and their topological

relations. We assume, specific features of each image are determined
by some method (irrespective of rotation) and then these features and

certain topological relations, discussed below, are coded and indexed

into what amounts to a database. The examples below are somewhat
simplified but serve to illustrate the point that even a simple system

structured in this manner is capable of distinguishing among a number

of similar images which vary only in the arrangement of features.

(See APPENDIX for details)

11



Consider the changes of a two-dimensional front-facing view of a
flat object. Intuitively, we know that adjacency is preserved;
that is two objects, or features that are adjacent remain adjacent
when the observation is rotated. By using a distance relation,
(also invariant under rotation) we can gain even more precise
matching.

A CD- CB

B AA

B

[FIG.3 TOP: Adjacency relations over rotation MIDDLE: four
rotations of a given object BOTTOM: three similar but different
objects)1
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5. Staged Feature Recognition

For enhanced utilization of hardware resources, let us consider

the structure of a basic staged feature recognition model. In its

most basic form, we envision a system embodying two levels of

pattern detection, one coarse and the other involving detail, where

the output of the 'coarse' recognizer may indicates whether or not

further processing is required by the second stage, the 'detail'

recognizer before arriving at a conclusion. Typically, we will
assume the coarse recognizer provides for much more rapid

processing than the detailed recognizer, and that the system is

such that there will be no computational overload. We also suppose

that the matching task requires a simple yes/no response, but that

the matching is of sufficient complexity that we require feature

recognition rather than template matching. We will also assume
that 'close doesn't count' in the final tally; that we are looking

for exact matches. In this paper, we leave out the details of how

the features are recognized. We are mainly concerned with the fact

that the outputs are determined in some way.

TABLE 1.

Coarse Detailed

Status Possible Outputs Input from Coarse Possible Outputs

x=Uy 1,2 1 4

x:=y 2 2 4,5

xI-y 3,2 3 5

-- identical := approximately identical 1= not identical

where 1,2,3 are the outputs from the coarse processor

4 indicates a match

5 indicates no match

13
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Now here we see that states 1 and 3 are unambigous, so they need
no further processing. (state 1 always maps to 4 and state 3 always
maps to 5) And we see that the detailed processor ends up
disambiguating ambgious symbols, akin to some fuzzy types of

processing. [19,20]

Now by appropriately coding of features and their relations, some
k.nd of statistical classification can often be arrived at that can
reduce the search time of the detailed comparisons. The keys are
how to accomplish this coding, and the subsequent recognition

process.

The target probabilities for a given coarse search:

Table 2.

Searched-by-fine Having char. Probability (target)
0 0 don't care
0 1 0
1 0 low
1 1 don't care

The probabilities are of course influenced by the algorithm and

the probability distribution of the domain.

14
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Various other similar methods may be used to accomplish the

recognition goals. And, of course, hashing and other indexing
schemes have been developed that aid in rapid matching of features
once the feature database has been generated. However, the simple

model above embodies several conceptual issues that may be bases
for extensions, three in particular are worthy of brief

discussion.

We can envision multi-stage recognition systems such that
successive stages resolve indecision. That is each stage's output

represents a subset of the previous stage's output. The key
performance parameters here involve the cost of processing at each

stage and the efficiency of each stage of the process as measured
by the amount of ambiguity removed. There may also be cases where

a certain bayesian component must be identified.

Similarly we can also envision systems that use data from prev7ious
levels in order to fine tune their search patterns. That is a

system where the output from one level represents not only
information about the image, but also information as to relevant
search patterns that will contribute to the determination of the

final set of features.

There is also the general issue of prediction and control of
incoming data. In a manner, similar to information and control
models we can analyze these systems by their ability given valid

input data, to match or tend toward certain target probabilities.

These three concepts are of interest to our research, not only

because of their applications to imaging problems, but because of
their use as a framework for more general types of characteristic

processing.

15



IV. Self-organization facets in imaging

Self-organizing network theory provides some techniques for rapid
determination of topological relations. In the form we consider
here, self-organization refers to the use of known node and arc
relations in order to assign nodes to classes. We should
distinguish between self-organization of networks in general,
lattice-like nets, and cartesian networks. In the visual case we
generally are interested only in the relations between the nearest
neighbor nodes in a 2-dimensional space. This self- organization
can also be viewed in some cases as a categorization problem, but
for imaging applications it is often more convenient to expose the
problem initially as a 2 dimensional array of nodes.

oo-Q o
[Fig. 4 Locality: One and Two Dimensions ]

the most common algorithms for 2-dimensions are a 8-nearest
neighbor (a.k.a octree) and 4-nearest neighbor (a.k.a cross); for 3
dimensions we would use 6-nearest neighbor or 26-nearest neigbhor:

[FIG. 5 4 nearest(2-D), 8 nearest (2-D) and 26 nearest (3-D)
neighbors respectively.]

16
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These types of nearest-neighbor algorithms are of use in

determining size and shape of objects, edge/boundary detection, or

determining 'at a glance' whether or not two points correspond to

the same object. It has important industrial uses in automated

part inspection.

There has been considerable work in theoretical computer science

on various aspects of graph theory; some of this work is applicable

to theories of self-organizing networks, although imaging and

speech applications typically involve the Cartesian restrictions on

topology similar to those outlined above.

Although neural nets have some ability to distinguish between

objects [121, it is not clear how this self-organizing ability

takes place. Moreover, there may be significant channel capacity

restrictions, that is, beyond some point, the nets cannot

distinguish among a wide variety of images.

17



V. Network organization

1. General

Different paradigms may embody fundamentally different assumptions
about network organization. Most models involve a feedback based
design; this aspect is more explicit in some models, more covert or
formal in others [1,4,8,9,12 et al]. System values are arrived at
by explicit numerical processing; we shall call these systems,
'continous-type' systems. Often outputs are not determined by a
predetermined sequence of operations, but on state characteristics
of the system in general; the 'settling conditions'. These models
bear striking resemblance to information and control models of
industrial processes.

Systems of polynomial equations often occur in the literature on

neural nets, typically taking one of four forms:

- functions constructed by the network as a response to a
conditioning sequence and possibly input stimuli; these functions
estimate the output value(s) or stand for internal decision or
influence processes.

- functions which represent a topological description of the network

in whole or in part
- functions which generate arguments for those estimator functions,

for instance, functions whose extreme values represent coefficients
for the decision functions.

- empirical or estimated performance graph of a neural net over some
parameter(s)

The architectures of continous-type systems are required to have

18



at hand a great deal of floating point type hardware; this type of

'number crunching' is quite natural as a model of a physical

process; however, in the present context it may have some flaws.

The primary critique of this continous-type approach rests on three

main issues: 1. that of local versus global min/max and 2. that

of absolute performance, or performance in comparison with other

nets, given a paradigm performing at optimal levels. 3. that of

computational resource utilization

When determining a min or max of a given polynomial we must be

assured that we are considering the global min or max and

not some intermediate local value:

[FIG. 6 Global vs. local min and max ]

As can be seen from the figure, using a too narrow an sampling

19
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interval of possible maxima or minima can lead to a local max or

min being chosen over a global one. On the other hand, a large

number of points cannot be sampled due to combinatoric explosion,

and of course, these problems become magnified as the

dimensionality is increased.

A second serious issue with continous-type systems is that given a

system has reached an optimal state, there is no guarantee that the

output will be the 'correct' one. Another way of putting this, is

that the scope of optimality of a particular algorithm/architecture

is generally narrowly restricted. These 'ideal cases' cannot

always be achieved and the 'optimality' generally refers to a

performance measurement over a wide domain; it does not guarantee

optimality or even correctness of a given output instance.

Moreover, there must be considerations given to the allocation of

computational resources. We must balance out computational

requirements with that of resource cost and actual performance. We

must be sure not to engage in 'computational overkill', but

partition the resources according to where they are needed the

most.

There are other qualitative issues as well. We should also look

at how a given system description performs over various types of

input. A system may not be able to distinguish between similar

types of objects if it has not seen these instances before;

it may be slow to learn the subtle characteristics that

distinguish one type of object from another and only have

latched onto gross differentiating aspects of these characteristics

that have been gleaned from previous instances. In a related vein,

neural net models often cannot take into account more than 2nd order

effects (i.e. 2 input paths at once), so that certain multivariate

events cannot be effectively modelled without more extensions to the

architecture.

20



2. Discrete processes

The 'continous-type system' approach appears to be ill-suited for

representing discrete processes (since there exist discontinuities
at these points), or discrete state representations rather than

solely numerical values. Moreover, this approach does little to

distinguish neural net models from vector or array processors.

Remember we are not always assuming that the networks have

continous inputs and clearly with a finite number of samples there
will be discontinuities between values, and these discontinuities

have to be evaluated in terms of overall theoretical framework,

particularly if there are analyticity and smoothness assumptions.

3. Memory Mechanisms

The concept of memory mechanisms are of vital interest to

cognitive researchers. In its basic form it is concerned with

representations of storage and retrieval of information. More

complex theories involve information processing or classifciatory

procedures as a prelude or adjunct to storage and

retreival110,11,15].

Memory issues are relevant to many of the paradigms we consider.

In most of the continous-type models, there is no explicit memory

mechanism for the storage of intermediate results. Now, clearly,

many of these models have an implicit memory component, in the same

sense that expectation is a 'memory' of values of a random variable

and their corresponding probabilities, or variance is a 'memory'

21
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of concentration of a random variable about its mean. (This would

apply to weighted means as well.)

Now the efficiency of this approach depends to a great extent on
the internal architecture of the neural net, as well as the
'encoding paradigm'; the relations that determine how particular

input-output pairs are encoded into memory.

Traditional models of human memory have pointed out the existence

of different types of memory (long-term, short-term, episodic,

procedural, textual, visual and so on) [11,15,17], and the

encoding, contextual, and classification systems used. Some of the

simpler models involve basically a read/write store. This can take

several forms, but the one we shall consider here: a model of

memory taking the form of an association list such that for a given
'name' a particular 'value' is associated with that name. This
'value' can be read or written by some memory management device.

Other paradigms involve content-add:essable features.

4. Discrete Networks

This leads us to consider discrete-type cognitive models as a
structural basis for neural nets. There are several reasons for

this. Many of the phenomena we are considering are discrete:

decisions, events, existence of specific attributes, and set

membership.Discrete representation would also be indicated where

22
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Many of the phenomena we are considering are discrete: decisions,

events, existence of specific attributes, and set membership.

Discrete representation would also be indicated where state space

representation is required and there is also the motivation to

allocate hardware resources; any reasonably priced system would have

a limited availability of parallel floating point capacity, so

therefore we would not wish to squander these types of computational

resources when simpler structures would suffice. As an added bonus

input and output alphabets of the systems are usually discrete, and
with the possible exception of some of the newer optical processors

the machine languages are binary.

When we consider discrete networks, we notice that there are a

number of possible benefits. For one, we are not restricted to

analytic, differentiable, Riemann integrable functions in modelling

of internal processes, and we are now free to investigate synthetic

properties of signals, and various types of memory simulation.

Conclusion

There appears to be an inherent flexibility in discrete type

representations. They seem to correspond with what cognitive

researchers mean when they refer to 'signals'. And, importantly
for implementation, discrete models are useful from a numerical as

well as a taxonomic point of view, as well as providing more

flexibility than models based mainly on floating-point hardware.

A few brief comments regarding these models are developed in the

appendix.
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APPENDIX

1. Some quantitative representations of fuzzy functions

Here we briefly consider some aspects of quantified fuzzy

estimators. These structures give us a method of embodying some

imprecision while maintaining certain quantitative relations

(see order relations below)

The basic model we shall consider here is such that the range of

the estimator Y represents a set of n possible contigous values

of the underlying variable 1, each having an equal probability.

A single value of a fuzzy function maps to a set of uniformly

distributed possible target space values:

P(X-iIY-k) - 0, 0 i < k

P(X-iIY-k) - 1/n, k . i J k+m

P(X=ilY-k) 0 0, k+m < i J n (Al)

In a figurative sense, we can view this type of function as a hybrid

type of uniform discrete density.

Given n objects X 1  and with q-samples taken contigously
1.en

(i.e. (1X11...q)...(Xp...n )  )

p - n-q+l , where p the number of q-samples of n objects

so we see that values

N(X):P(X)=n

1/). 2

2A) 2

with m/ the probability of the 4 maximum likelihood estimators

of the target function.



From this model we get the following algebraic relations:

a - min(pq)

- qp

~the number of Ii that correspond to the maximum likelihood:

[FIG. 1-A Fuzzy estimation]

We also see that order relations are preserved in a probabilistic

sense:

where Y are the fuzzy estimators of 1, and are of 'size' q,

y ( q,n-q

M(,<11 ~=a 1, -Ya s Y c+ y) - (W2 + a T v + 2qy) / 2q2

u-q-1, T y -1

P(11  12 z, r -G Y2 = a + y~) - q-T q q
2

PCI1 > 12I Y, G Z - a + 7) - a /2q 2 . a -q-y-l

Sep



2. A Generalized Rumelhart Net: GR-Net

Here we provide a functional outline of the Rumelhart network.

Note that there is an explicit internal (hidden) layer, (the

backward propogation).

GRiW ( IIZos(te) )

I Input vector

X Intermediate (inner/hidden) level vector

Z Output vector

c is the comparison function (compares for identity or similarity)

S(t,) initial state By this we mean all the I(i),Z(i) are in some

known, initial value (perhaps null)

Moreover, the X and Z can be further partitioned as follows:

X- ( SI V )

Szo state of vectors corresponding to a specific node (likely

unique for each node k, (S 1 1 ... SIn) ... (Sm1...Smn)

I , state of inputs (copies) from previous level I: identical

for each node k, (Ill...Ila) ... (Im...Imn)

V , value of the vectors corresponding to each specific node

a function of Sxand I x,(V 1 .. Vin) ... (Vm ...Vmn)

n nodes previous level (I), m nodes current level (I)

where
V lj= fl(Sij I ll)

Xq - fs(V ... ), I (XI ... X n

S ij(t+l) - f3(CzSijt , some function of the

the comparison function, and current state.



Z- RZO VW

R zo state of vectors corresponding to a specific node (likely

unique for each node k, (RI..RM ... (I 1.. R ya)

I state of inputs (copies) from previous level 1: (identical

for each node k), (XI..Ia ... (Iy ... X )

W zo value of the vectors corresponding to each specific node

a function of R zand V Z, *V ..TI) .. (i I.wy

a nodes previous level MI, y nodes current level (Z

where

Z q= fl(W qj** W qn)

Z - (Z1 ... Z )i

R ij (t+l) - f4(CZ§R ij(t). 1 ij) or some similar function.

C z- f,(Z1... Z yTl* T y) the comparison function

The learning phase takes place in stages:

(Ii),T(i) presented by the system

ZMi = f3 (1(i))

CMi - f2(ZMi)Ti)

1(i') =f4(C(i),X(i))

i refers to beginning state i' refers to ending state

TMi is the target output value at time i paired with the input (IM

at time i. (Although in practice the system can be pipelined we show

only one time period here for simplicity)



temporally:

I - fz(Vq... Vn) X - (I ... x)

W ij- f4UR UD I~)

zq=f( qj .. Vqn)i Z - (Z1 ... Z n

CzM f,(Z1 ... z y v Ti ... T y) the comparison function
R j(t+1)-fIz'Ri j) or some similar function

S ij(t+1) - f( IsjWl )or some similar function

Ti ... T yIs the target output.

[FIG.A-l A simple GR-Net: Large nodes correspond to IZ (top

to bottom). small nodes correspond to (V,S) and (1,1) (middle and

bottom), the comparison function is not shown]
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3. Statistical Aspects of Feature recognition

Consider a system with n images, (therefore n - n comparisons),

and k possible features. Clearly, every image either has, or does

not have a given feature. We encode each image as an incidence

array Ik= I...X pwhere every XIa ( 0,1 ), with

XIequal to zero if feature i is not present and one if it is.

Once all the images in the database have been coded in this way,

we determine the corresponding probabilities nr...Ikof the

features over the entire database. The probability that there are

no matches, that is, the probability that we can uniquely determine

every image in the database is approximately:

(1-z) w w = n - n,

z2 (,2 (1-RI)2 . ((nk)2+ 1- 2

Note that we can view a relation between two objects, or a set of

relations as a feature, in the same way we view an object as a

feature. In this way, we can generate as many features as we wish

in order to obtain a unique determination of images.

4. Bamming model for templates

In its most basic form a Ramming distance simply represents the

number of differences of two (n-bit) vectors, e.g.

1... .. .n

A hlX i , Yji) =(Ii(1),Y(1)) + . . . + A(XI(n),Y.(n))

A((k),Y(h)) = 0 if X(k) Y(h) else 1

So in a template matching context:

= Xi min j(Ah(lit T)), v = T : minij(Ah(l i p T)),

- Ah(p.,), Ah(li, Y.) = A(Il(),YM(1)) + . . . + A(lI(n),YW(n))

if > a, a some (small) constant indicates excessive noise,

the item seen is not found in the template library.

if > a this is a no match condition.

if there is more than one A or r this indicates a conflict

(i.e. multiple matches), which is in effect also a no match condition.
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